COBOL Applications: Techniques to
Make Them Efficient

Priyal Shah
Bob St. John

Version Date: 9/27/2017

This document can be found on the web, www.ibm.com/support/techdocs
Under the category of “White Papers.”

© 2017, IBM Corporation

http://www.ibm.com/support/techdocs

Contents

COBOL Applications: Techniques to Make Them Efficientcccocooi i 1
MOTIVATION: ceeiiiieieee ettt e sttt e e e st b e e e seabtae e s s sneaeessassbeeesessneaeessansseaesns 1
L1 15 PP 2
HOTSPOT ANALYSIS: .niiiiriieieeieeieecicrrreee e e e e eescrertreeeeeeesesarertseeeeeeesesessessreneseeesesesansssnneees 3
Identifying the HOttest MOAULES:uviiiiiiiieccceree e iaee e e e 3
Recommendation for Hottest COBOL ModULES:ccovvereriiririiieriireicieenereecree e 5
Benefits of Automatic Binary OptimizZer: ... uiieeeee it 5
0= (] =T [0TSR UPPPRRTIP 6

© 2017, IBM Corporation

COBOL Applications: Techniques to Make Them Efficient

This document describes why it is important to stay current with the COBOL compiler
versions and exploit the use of the highest arch level feasible for your applications in
the new era of performance. But your installation may have thousands of COBOL
programs, many of which consume very little CPU. Migrating all your applications to the
new compiler version might be expensive and time consuming. By targeting the most
performance critical sections of your application code for migration first, you can gain
most of the performance advantage of the latest compiler technology with a much
smaller effort.

Motivation:

With challenges in the micro-processor industry approaching physical limitations,
dramatic frequency gains from generation to generation hardware are a thing of past.
More and more, modern processor gains are coming from microarchitecture
improvements rather than large frequency gains. These microarchitecture
improvements include hardware design tradeoffs which can increase performance
variability. Hardware design tradeoffs tend to favor optimized, well written code. Older
code may not get as much help. Therefore, to get the best performance out of the
latest hardware, we recommend performance sensitive code should be compiled with
the latest compiler technology and with aggressive optimization.

To understand this fundamental change in processor performance, review the server
frequency enhancements made since the z196:

© 2017, IBM Corporation, IBM Z Systems Performance Version Date: 9/25/2017
http://www.ibm.com/support/techdocs
COBOL Applications : Techniques to Make Them Efficient Page 1

http://www.ibm.com/support/techdocs

Generational Performance gains from
frequency vs. microarchitecture

= frequency microarchitecture

38% total (avg)

24% total (avg)
11% total (avg)

10% total (avg)

z196 zEC12 z13 z14
5.2 GH=z 5.5 GH=z 5.0 GH=z 5.2 GH=z

When clock frequency increases, all applications see a performance boost. However,
for microarchitecture improvements, a lot of analysis is done to figure out how to make
specific constructs faster allowing mainstream workloads run more efficiently. Edge
cases where application code hasn’t kept up with recommended best practices may
not see the full benefits from microarchitecture changes. For future generations,
microarchitecture improvements will likely continue to play a major role in overall
performance improvements. Improvement in per engine speed are now, and will likely
continue to be in future, more reliant on well written code being able to match the
server design. For compiled code this is done by staying current with compiler levels
for critical applications.

Advanced compiler technology works in concert with the latest hardware to provide
optimal application performance. For example, the new Enterprise COBOL v6.2
compiler fully exploits the Vector Packed Decimal Facility, which improves decimal and
floating point intensive applications by up to 38% over those compiled with COBOL
v6.1(%).

Tip:

Your installation may have thousands of COBOL programs, many of which consume
very little CPU. For most of these programs, the benefit of migrating to a new compiler
may not be enough to justify the development and testing cost. By targeting the
programs using the most CPU, you can get most of the performance benefits while
minimizing the cost of migration.

© 2017, IBM Corporation, IBM Z Systems Performance Version Date: 9/25/2017
http://www.ibm.com/support/techdocs
COBOL Applications : Techniques to Make Them Efficient Page 2

http://www.ibm.com/support/techdocs

Hotspot Analysis:

z/0S provides a wealth of tools to monitor the CPU consumption of subsystems,
applications and transactions. Tools like RMF, OMEGAMON, other vendor products can
be used to do this. z/OS also provides SMF records such as record type 110 for CICS,
120.9 for WAS, and 30 for batch. These SMF records can be analyzed directly to
determine what applications on your system are consuming the most CPU.

When considering what applications to focus on, pay attention to the frequency with
which the program is executed and the time-period it runs. A small CPU improvement
in an application executed millions of times can reap significant performance
improvements. Likewise, an application which is run once, in the batch window when
there is plenty of capacity, may not be a good candidate.

Once you know what applications to focus on, a hotspot analysis tool can be used to
find the CPU time of various COBOL modules in these applications. The modules
consuming the most CPU will be the best candidates for migration.

Identifying the Hottest Modules:

There are multiple hotspot analysis tools which can be used to determine which
modules are consuming the most CPU resources. In the description below, we show
how to do this analysis using the IBM Application Performance Analyzer for z/OS. A
similar approach can be used with any other hotspot analysis tool.

IBM Application Performance Analyzer for z/OS, is an application performance-
measurement tool designed for use on IBM z/0S systems. The product’s key function
is to measure and report on how system resources are used by applications running in
virtually any z/OS address space. APA will identify modules and specific code sections
in COBOL programs which are CPU intensive. It does this by sampling the application
address space and can be run for any address space, batch or OLTP.

The Cxx set of reports will provide detailed information for every CSECT that is
sampled. Most reports can be expanded to multiple levels for greater detail.

Identify top application modules by looking at the CO2 report and picking the module
names with “Application Progr” in the description field. For these module, filter out
hottest COBOL modules. These will be the candidates for recompiling with the latest
COBOL compiler version and highest feasible Arch level.

© 2017, IBM Corporation, IBM Z Systems Performance Version Date: 9/25/2017
http://www.ibm.com/support/techdocs
COBOL Applications : Techniques to Make Them Efficient Page 3

http://www.ibm.com/support/techdocs

C02 — CPU usage by module:

File View Navigate Help

CB2: CPU Usage by Module (B656/TSTJOBE1) Row 00001 of 00207
Command ==== Scroll ==== (SR
Name Description Percent of CPU time = 10.80% +1.1%

Snaoodloooa 4000 ot b no oo potnaoaiosooffanad .
ISRSUPC |Application Progr [39.34 ========s=c=cccceea-

Coeze Application Progr 14.57 =======

IGGAI93E (QSAM/BSAM Process 3.57
IGDDCFSR Storage Managemen
ISPMAIN Application Progr
Ch3zZs Application Progr
ISPSUBS Application Progr
cozan Application Progr
I0SVSSCO MNucleus Routine
[AXPQ Nucleus Routine
LAXVF Nucleus Routine
LAXVP Nucleus Routine
TIEAVESVC Supervisor Contro
[ECVEXCP Execute channel p
Ch399 Application Progr
| CB3L0 Application Progr 0.92

Pt et et e et et e)P PO P Cad
=1
w0

| 1 | | | | | I | | A [Y | A | I I

N
If interested in further analysis details, the following reports can be useful:

C01 - CPU usage by category. Category is the top level in the hierarchy. CPU
consumption is categorized as Application code, SYSTEM, DB2SQL, DATAMG, IMSDLI,
ADABAS or NOSYMB

C03-Code Slice report will break things down to a range of instructions (the range, or
code slice size can be modified in the Setup options).

C08-Referred Attribution report will attribute CPU usage by system modules back to
the calling application program.

CO7 report can be used to summarize usage by procedure. You can also use the Source
Program mapping feature to display usage at source code level. After a program has
been mapped, the CO7 report is used to summarize usage by procedure

© 2017, IBM Corporation, IBM Z Systems Performance Version Date: 9/25/2017
http://www.ibm.com/support/techdocs
COBOL Applications : Techniques to Make Them Efficient Page 4

http://www.ibm.com/support/techdocs

Recommendation for Hottest COBOL Modules:

For your hottest COBOL modules, we recommend you follow best practices for COBOL
v6.2 Migration as suggested by the Migration Assistant and Migration Guide for
upgrading compiler levels. Especially pay close attention to Chapter 18, “Adding
Enterprise COBOL Version 5 or Version 6 programs to existing COBOL applications” in
the migration guide. Also note, Enterprise COBOL v5, v6 or later executables are
Program Objects and can reside only in PDSE data sets. If your hottest COBOL modules
load libraries are in PDS data sets, when you recompile these modules with latest
COBOL compiler, bind them into a PDSE data set, and add the new data set to your
load library concatenation. We recommend you have the same naming convention for
your PDS and PDSE data sets and remember to add the new PDSE data set to your
current load library concatenations.

Benefits of Automatic Binary Optimizer:

If you don’t have the source code for one of the identified hot COBOL module or for
some reason do not want to recompile, you can make use of the Automatic Binary
Optimizer for z/OS (ABO). IBM Automatic Binary Optimizer (ABO) is a unique, cutting-
edge technology designed to optimize the performance of COBOL program modules
built with VS COBOL II v1.3 to Enterprise COBOL for z/OS v4.2 without the need for
recompiling from program source. ABO uses advanced optimization technology
shipped in IBM Enterprise COBOL for z/OS to perform high-fidelity optimization and
generates code to fully exploit IBM z Systems mainframes without affecting program
logic. As a result, the optimized modules run faster but program behavior remains
unchanged, significantly reducing testing effort. For more information please refer to:
https://www.ibm.com/us-en/marketplace/improved-cobol-performance.

*Disclaimer: all performance results reported in this article are based on internal IBM compute-intensive test suites.
Performance results from other applications may vary.

© 2017, IBM Corporation, IBM Z Systems Performance Version Date: 9/25/2017
http://www.ibm.com/support/techdocs
COBOL Applications : Techniques to Make Them Efficient Page 5

http://www.ibm.com/support/techdocs
https://cobol-migration-assistant.mybluemix.net/
http://publibfp.boulder.ibm.com/epubs/pdf/igy6mg20.pdf
https://www.ibm.com/us-en/marketplace/improved-cobol-performance

References:

The COBOL Migration Assistant: https://cobol-migration-assistant.mybluemix.net/

COBOLv6.2 Migration Guide:
http://publibfp.boulder.ibm.com/epubs/pdf/isgybmg20.pdf

ABO for z/OS v1.3 Users Guide:
http://publibfp.boulder.ibm.com/epubs/pdf/c2785454.pdf

APA library link: https://www-01.ibm.com/software/awdtools/apa/library/ - versionl4

APA user guide: http://publibfp.boulder.ibm.com/epubs/pdf/cazgug00.pdf

APA customization guide: http://publibfp.boulder.ibm.com/epubs/pdf/cazgcg00.pdf

© 2017, IBM Corporation, IBM Z Systems Performance Version Date: 9/25/2017
http://www.ibm.com/support/techdocs
COBOL Applications : Techniques to Make Them Efficient Page 6

http://www.ibm.com/support/techdocs
https://cobol-migration-assistant.mybluemix.net/
http://publibfp.boulder.ibm.com/epubs/pdf/igy6mg20.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/c2785454.pdf
https://www-01.ibm.com/software/awdtools/apa/library/#version14
http://publibfp.boulder.ibm.com/epubs/pdf/cazgug00.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/cazgcg00.pdf

